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PGAS Approach to Implement Mapreduce Framework
Based on UPC Language

Shomanov Aday(✉), Akhmed-Zaki Darkhan, and Mansurova Madina

Al-Farabi Kazakh National University, Almaty, Kazakhstan
adai.shomanov@gmail.com, {darhan_a,mansurova01}@mail.ru

Abstract. Over the years from its introduction Mapreduce technology proved
to be very effective parallel programming technique to process large volumes of
data. One of the most prevalent implementations of Mapreduce is Hadoop frame‐
work and Google proprietary Mapreduce system.

Out of other notable implementations one should mention recent PGAS
(partitioned global address space) – based X10, UPC (Unified Parallel C)
versions. These implementations present a new viewpoint when Mapreduce
application developers can benefit from using global address space model while
writing data parallel tasks. In this paper we introduce a novel UPC implementation
of Mapreduce technology based on idea of using purely UPC based implemen‐
tation of shared hashmap data structure as an intermediate key/value store. Shared
hashmap is used in to perform exchange of key/values between parallel UPC
threads during shuffle phase of Mapreduce framework. The framework also
allows to express data parallel applications using simple sequential code.

Additionally, we present a heuristic approach based on genetic algorithm that
could efficiently perform load balancing optimization to distribute key/values
among threads such that we minimize data movement operations and evenly
distribute computational workload.

Results of evaluation of Mapreduce on UPC framework based on WordCount
benchmark application are presented and compared to Apache Hadoop imple‐
mentation.

Keywords: UPC · PGAS · Mapreduce

1 Introduction

Large-scale data processing nowadays is widely used in many domains of science and
industry. There is a large number of sophisticated tools and algorithmic solutions that
allow to achieve high efficiency in handling and processing enormous amount of data.
Main driving forces of modern big data development are powerful Mapreduce - based
frameworks. The idea of Mapreduce was first presented in paper [1] by Google
researchers Jeffrey Dean and Sanjay Ghemawat in 2004. In general, the main idea behind
Mapreduce is to divide processing of the big data set between concurrently running map
and reduce processes such that each process performs processing of smaller data chunk.
The processing work in Mapreduce is done in several steps:
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• Init phase. Specify map and reduce functions, provide input and output directory
paths and etc.

• Map phase. Each mapper scans the input chunk of data and emits key/value pairs
based on user provided map function.

• Shuffle phase. Distribute key/value pairs among reducers in a way that each reducer
operates on list of key/value pairs with some assigned to that reducer unique key.

• Reduce phase. Each reducer performs operations on assigned key based on user
provided reduce function.

The main complexity in efficiently implementing Mapreduce lies in developing
scalable and optimized code for shuffle phase. To achieve these goals it is required to
distribute key/value pairs with minimized network latencies. In distributed environment
due to necessity of data movements between processes that belong to different nodes,
network latencies can be very high and significantly degrade overall performance.

To overcome that we need to consider efficient tools that will allow to perform
sufficiently transparent and optimized remote data access operations. For that purpose
in our current work we will use UPC programming language. UPC programming
language [2] belongs to a family of PGAS languages. PGAS (Partitioned Global Address
Space) is a parallel programming model in which memory address space is divided into
two non-overlapping logical areas: private and shared. Private space is local to every
thread and can be accessed only by its own thread. Shared space has a more complex
structure where each thread has an access to shared memory and each memory element
has additionally affinity to the owner thread. The benefit of PGAS model is that each
thread has a transparent view of shared memory layout hence locality can be preserved
where it is needed to optimize data distribution for specific purposes of the application.
UPC language provides a set of operations with shared memory such as: pointers arith‐
metic, write and read functions, memory allocation and de-allocation functions and
other. UPC uses specifically designed GasNet communication system that enables high-
performance one-sided communications in order to implement remote data access oper‐
ations on shared memory.

2 Related Work

The implementation of PGAS-based Mapreduce model requires careful consideration
and solving of many problems associated with the organization of the computational
process, the process of data exchange between computing nodes, distribution and load
balancing between concurrent map and reduce processes. In the article [3], authors
describe Mapreduce framework, implemented on the UPC language. The approach
described in this article applies collective functions for data exchange in shuffle phase.
Map and reduce functions in that approach operate on the local storage of each node,
and for that reason the authors were forced to change the implementation of collective
UPC functions to make them work with local memory space of each thread. In our
implementation we used different approach based on shared hashmap data structure to
perform key/value exchange. Hashmap instances reside in shared address space and each
instance has an affinity to a single thread. Accordingly, every thread has an access to

PGAS Approach to Implement Mapreduce Framework 343



hashmap instance of any other thread. In different paper [4] authors presented a similar
approach where they applied X-10 library implementation of hashmap data structure to
store locally in each thread intermediate key/value pairs and then merge all the values
to one thread. X-10 enabled Mapreduce merging procedure is poorly scalable since all
data is moved to a single place and therefore such an approach possesses inherent limi‐
tations associated with processing and storage capabilities of a single node. In our
approach we keep one instance of shared hashmap per thread such that each thread works
on local portion of its own shared hashmap and other threads when needed could perform
remote operations on that thread-local instance of shared hashmap. Hence, processing
is not limited by resources of a single node and only requires efficient data exchange
after finishing map phase. Additionally, this way we can control locality of operations
on each instance of hashmap and as a result later on can optimize key distribution among
threads for reduce stage. Shared hashmap allows to efficiently extract and write key/
value pairs in average O(1) time complexity. Consequently, based on features of
hashmap data structure we attempted to reduce overhead associated with searching and
extracting keys.

3 Main Part

3.1 Mapreduce on UPC Framework

Presented in the paper Mapreduce on UPC framework aims to bring together programm‐
ability benefits associated with UPC model with advanced processing power of Mapre‐
duce technique. Implications of such architectural solution is that it is become very
convenient to be able to express complex Mapreduce logic in a more concise form of
UPC - Mapreduce by using global memory abstraction.

In order to implement Mapreduce in UPC we first wrote code for shared hashmap
data structure based on shared memory operations such as upc_memput, upc_memcpy,
upc_alloc, upc_memget and other. Operations on shared hashmap are controlled by our
API functions such as shared_hashmap_put, shared_hashmap_get, shared_hash
map_resize, shared_hashmap_remove.

To store key/value elements we created globally addressable array of shared
hashmap instances with default blocking factor of one in shared address space. Such
layout of shared array corresponds to one-to-one mapping of threads and hashmap array
entries. Consequently, each hashmap is designed to store key/value elements that are
local to the thread executing map functions (see Fig. 1).

Map and reduce functions are specified by the application developer and are passed
as parameters to init_mapreduce function that launches and controls the entire
processing cycle of Mapreduce execution.

Each thread is assigned a number of map tasks. Each map task operates on exactly
one input file. Therefore, in order to avoid imbalance, before map phase runtime distrib‐
utes files among threads in such a way that each thread has approximately the same
proportion of input files.

After all map functions are finished their execution, the shuffle phase take place. The
shuffle phase is divided into 2 main stages:

344 S. Aday et al.



1. Data movement optimization and load balancing step.
2. Distribution of key/values among reducers.

In the process of load balancing we are using integer indexing of keys. We have to
assign each key unique integer identifier. It is turn out that this operation is very expen‐
sive to perform since we need to traverse all hashmap entries in every thread by using
only processing power of a single thread.

This thread is responsible for fetching remote hashmap entries and checking if that
entry (key) already has been assigned identifier or not. If identifier already has been
assigned to that entry (key) then we can skip it, otherwise it is required to update id field
of that hashmap entry by remote write operation. Fetching and updating remote values
by fine-grained operations incur a lot of communication and software overhead that
should be avoided or substituted by coarse-grained bulk operations.

Hashmap element consists of the following fields: integer id, shared [] char * key,
integer in_use, shared [] shared_vector * data. Since all field values are located in shared
memory they can only be accessed by shared pointers. Shared pointers orders of magni‐
tude slower than ordinary private pointers and therefore amount of accesses to shared
memory area by shared pointers should be minimized.

Therefore, in order to minimize fine-grained access operations we developed more
scalable and efficient in terms of running time method to assign each key unique integer
identifier. We store keys in a shared array of string entries. A new method works by
merging local to each thread keys stored in a shared array into a single shared array that
has an affinity to thread number 0. The goal was to minimize number of copy operations.
In a new method this number is equal to O(logn) compared to O(n) operations in a
previous implementation. There n represents number of threads.

Fig. 1. UPC on Mapreduce map and shuffle design.
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Listing 1. Procedure for coarse-grained merge of key arrays   

Merge procedure uses divide and conquer method that works according to Listing 1.

3.2 Data Movement and Load Balancing Optimization

For load balancing and data movement optimization we employ heuristic approach
based on genetic algorithm [5]. Genetic algorithms are used in many problems in domain
of combinatorial and multi-objective optimization. The problem with many instances
of combinatorial optimization tasks is that they belong to NP class of problems. There‐
fore they cannot be solved by means of polynomial time algorithms and only hope to
find a feasible solution for sufficiently large dimensions is to apply different heuristic
approaches.

The following set of equations describes the problem:

min

threads−1∑

i=0

keys∑

j=1

xij × costij (1)

xij ∈ {0, 1} (2)

min

(
max

i,j=0..threads−1

|||loadi − loadj

|||

)
(3)
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loadi =

threads−1∑

t=0

keys∑

j=1

xij × sizetj (4)

The optimization problem we have stated above is a modification of “Generalized
assignment problem” which is known to be NP-hard. Genetic algorithms for solving
GAP has been presented in different sources before, e.g. in [6, 7].

In order to find cost of assigning key j to thread i we construct cost matrix in which
each entry costij is corresponding cost value of moving key j to thread i. Quantitatively,
cost represents number of elements of some particular key that needs to be moved to
some other thread. Formula (3) defines load balancing function. Load balancing function
is calculated as minimum value over maximum difference of loads assigned to different
pairs of threads. We need to perform distribution of key/values among threads with aim
to optimize both functionals defined in formulas (1) and (3). Formula (2) defines the
domain of xij variable to be consisting of two integer values of either 0 or 1. For thread
i and key j the value of xij = 0 when thread i is not assigned to process key j and xij = 1
otherwise. Load value for each thread i is defined in formula (4). Genetic algorithm
works according to following procedure:

Listing 2. Genetic algorithm for load balancing of keys among reducers  

In order to be able to adapt genetic algorithm to solve our problem we first need to
identify how to represent solution in the language of genetic algorithm. Solution
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(chromosone) is represented by vector, where i-th entry contains number of the thread
that is assigned to process i-th key. Population is defined as set of all solutions and can
be selected and correspondingly adjusted depending on specific needs and limitations
of the task. Fitness value is an objective function that can be calculated for each particular
solution. The task of genetic algorithm is to find specific solution with best fitness value.
Fitness function in our problem is represented by combination of functionals described
in (1) and (3).

Then, after genetic algorithm generates a solution, runtime can proceed to perform
shuffle procedure.

3.3 Shuffle Phase

To perform shuffle procedure we need to appropriately distribute key/values among
reducers such that each reducer can then schedule to perform reduce function calls on
input elements with same key. In our program we have implemented shuffle procedure
as follows:

• To store key/value elements on reduce side we created a new array of shared hashmap
data structures with default layout in shared address space

• Each hashmap of the old array on each thread is traversed in parallel and according
to the thread-keys mappings, obtained by solving optimization problem, elements
are copied to threads that are assigned to process current element (key).

• After key/value distribution completes, each thread is ready to run reduce functions

Reduce stage is organized such that on each thread shared hashmap is traversed and
each hashmap entry of <key, set of values> is assigned as input to a single reduce
function. After completing their execution each reduce function writes final result to a
single resulting file.

3.4 WordCount Implementation

For experimental evaluation of our Mapreduce framework we have chosen WordCount
benchmark application. WordCount program computes number of occurrences of each
word in a set of documents. This problem is a standard application for evaluating
Mapreduce-based frameworks. The main idea behind implementing WordCount on
Mapreduce is to divide processing such that each mapper emits for every word a pair
of <word, 1> and each reducer then add all entries in the list of 1’s that has been assigned
to it and emits as final result pair of <word, overall_count>. In code listings 3 and 4
below our map and reduce function implementations for WordCount application are
presented. The code for map and reduce functions must be written in C language with
possible use of UPC-related functions for shared memory operations.
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void * map (string filename) 
{ 

char * file_data; 
  file_data = read_file_contents (filename); 

Vector tokens; 
vector_init(&tokens); 

Tokenize (file_data,&tokens); 
for (int i = 0;i<tokens.size;i++) 
{ 

collect (vector_get (&tokens,i),1); 
}   
free(file_data); 
} 
Listing 3. Implementation of map function for WordCount application  

void reduce (string key,shared [] vector_sh
*values) 
{ 

int i; 
int cnt = 0; 
for (i = 0;i<values->size;i++) 

 { 
  int v = vector_get_shared_copy (values,i); 
  cnt+=v; 
 } 

reduce_collect (key,cnt); 
} 

Listing 4. Implementation of reduce function for WordCount application

4 Experimental Results

In this section we present results of evaluation of UPC on Mapreduce framework based
on Google cloud platform architecture. The setup consisted of one instance of n1-
highmem-8 (8 vCPUs, 52 GB memory). In our experiments we used the following soft‐
ware:

• Berkeley UPC runtime version 2.24.0
• Apache Hadoop version 2.7.3
• The Berkeley UPC-to-C translator, version 2.24.0

WordCount application has been tested for different input sizes ranging from 50 to
200 megabytes. Based on results of running WordCount on Apache Hadoop and UPC
on Mapreduce (see Fig. 2) we can conclude that Mapreduce on UPC shows better
performance on all inputs besides smallest 50 Mb input in which both frameworks show
the same performance.
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Fig. 2. Hadoop and Mapreduce on UPC running time for different input sizes

5 Conclusion

The paper presented UPC on Mapreduce framework that allows to users to implement
data parallel applications by expressing them in the form of map and reduce functions.
By analyzing results of evaluation of Mapreduce on UPC framework we observed better
performance results compared to Hadoop, but algorithm have some scalability issues in
case of small number of threads performing WordCount task.
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